Alternativen zur Straßenbahn

Kein Verkehrsmittel ist alternativlos – Autos nicht, Busse nicht, Straßenbahnen auch nicht. Aber jedes davon kann unter Berücksichtigung der Rahmenbedingungen, der Ziele und Anforderungen die beste Wahl sein. Und so kann die CityBahn für Wiesbaden die beste Alternative sein. Doch welche anderen Massentransportmittel gibt es – neben der Straßenbahn – überhaupt?

Die Frage, welche Transportmittel für welche Anwendungsbereiche des öffentlichen Personennahverkehrs geeignet sind, treibt Verkehrswissenschaftler und Stadtplaner seit Jahrzehnten um. Und bei der Beantwortung spielen eine Vielzahl an Faktoren eine Rolle: Kosten, Leistungsfähigkeit, politische und gesellschaftliche Akzeptanz, ökologische Folgen – um nur einige zu nennen.

Anforderungen an ein öffentliches Verkehrsmittel

Eine der ersten Fragen bei der Auswahl des Verkehrsmittels ist: Wie viele Menschen sollen über welche Entfernung transportiert werden? Durch die jahrzehntelange Erfahrung können die Verkehrsplaner bei den allermeisten Optionen auf ein breites Spektrum an bewährten, fundierten Erkenntnissen zurückgreifen.

Neue, technische Entwicklungen müssen dabei natürlich auch berücksichtigt werden. Nicht jede Neuerung ist aber automatisch bahnbrechend. Denn auch Busse, die mit Wasserstoff oder Akku fahren, sind letztlich Busse. Autonome Straßenbahnen bleiben grundsätzlich Straßenbahnen, Gummistraßenbahnen sind bei genauerem Hinsehen auch nur weiterentwickelte Spurbusse. Selbstfahrende Autos sind unterm Strich Anrufsammeltaxis mit anderer Kostenstruktur und dadurch veränderten Anwendungsbereichen. Lediglich Flugtaxen bespielen ganz neue Einsatzfelder, die so zuvor bestenfalls mit Helikoptern abgedeckt wurden. Abgesehen von deren schlechten Energieeffizienz werden diese aber auch kein Massentransportmittel ersetzen.

Für Wiesbaden suchen wir ein Rückgrat für unser ÖPNV-System, welches mehr Menschen befördern kann als das heutige Bussystem. Denn selbst bei gleich bleibendem Modal Split wird die Fahrgastzahl allein wegen dem Bevölkerungswachstum in Wiesbaden und der Region weiter ansteigen. Gleichzeitig soll der ÖPNV-Anteil am Modal Split aber wachsen. Um einen ÖPNV-Anteil wie beispielsweise Mainz oder Frankfurt zu erreichen (~22%), müssten die Wiesbadener Busse zwischen rund ein Drittel mehr Fahrgäste befördern. Ob das mit den heute schon vollen Bussen, besonders in den Stoßzeiten, funktionieren kann, bleibt fraglich.

Was sind die Optionen?

Der Blick in die Fachliteratur hält folgende, grundsätzliche Transportsystem zur Personenbeförderung bereit – hier eingeteilt nach Transportkapazität (in Personen pro Stunde und Richtung) und der Systemlänge, also der sinnvollen Länge der Verbindungen/Linien. Diese ergibt sich aus der technisch realisierbaren Geschwindigkeit des Verkehrsmittels und den zumutbaren (attraktiven) Reisezeiten.

Abbildung verändert nach: Monheim/Muschwitz 2010

Mit Blick auf diese Einteilung wird klar: Es gibt grundsätzlich eine Vielzahl an Transportmitteln, die eine höhere Kapazität haben als Busse – und ähnlich hohe (oder höhere) wie die Straßenbahn. Deshalb reicht dieses Kriterium allein nicht – die Geschwindigkeit ist ebenfalls relevant.

Und da wird’s schon dünn: Fahrsteige/Rolltreppen (moving sidewalks) können enorm viele Fahrgäste befördern – deutlich mehr als Bus oder Straßenbahn. Sie sind aber langsam und machen daher nur über kurze Strecken Sinn – beispielsweise am Flughafen Frankfurt (als Verbindung Terminal – Bahnhof). Auch Seilbahnen (genauer gesagt: Umlaufseilbahnen) können eine höhere Transportkapazität haben als Busse – sind aber ebenfalls recht langsam. Die Fachliteratur geht daher von einem sinnvollen Einsatz von Seilbahnen von sechs bis acht Kilometern aus. (Auch ist es schwierig, mit Seilbahnen Netzwerke zu bauen – oder Kurven.)

Klassische S- und U-Bahnen haben ebenfalls deutlich höhere Kapazitäten als ein Bussystem – sind aber auch mit massiven Bauarbeiten und Kosten verbunden. Die S-Bahnverbindung zwischen Mainz und Wiesbaden hat einen Haltestellenabstand von durchschnittlich drei Kilometern – nordmainisch auf der S1 sind es sogar vier bis fünf Kilometer. Zusammen mit 120 bis 180 Meter langen Zügen ist das zur Erschließung der Innenstadt gänzlich unbrauchbar. 

U-Bahnen kosten überschlägig das zehn(!)fache einer Straßenbahn. Die Stadt Frankfurt startete im August die Erweiterung der Linie U5. Die 2,7 Kilometer sollen nach aktuellen Schätzungen 370 Millionen Euro kosten – und damit rund ein Drittel mehr als die komplette CityBahn vom Mainzer Hauptbahnhof nach Bad Schwalbach.

Die hiesige Aufgabenstellung bleibt: Eine leistungsfähige Erschließung der Wiesbadener Innenstadt und die verlässliche Verknüpfung mit Mainz und Taunusstein. Daher bleiben mit nüchternem Blick auf die Alternativen neben der Straßenbahn vier grundsätzliche Optionen übrig: 

  1. Ein zum Bus-Rapid-Transit ausgebautes Bussystem, 
  2. eine Seilbahn,
  3. eine Schwebe-/Hängebahn oder
  4. Spurbusse, ART oder sonstige, spurgeführte “Gummistraßenbahnen” (Tramway sur pneus)

Nur ein Teil der Optionen ist in bestehende Netze und Infrastruktur integrierbar.

Bus Rapid Transit

Bus Rapit Transit-Systeme (BRT) sind speziell ausgebaute Bussysteme. Mit einem klassischen BRT ließe sich gegenüber dem heutigen Bussystem die Leistungsfähigkeit weiter steigern, indem Kapazität oder Geschwindigkeit (oder beides) der Busse erhöht werden. Das heißt in der Regel: Einsatz größerer Fahrzeuge (Gelenkbusse/Doppelgelenkbusse), die bauliche Trennung der Bustrasse von allen (!) anderen Verkehrsteilnehmern und meist auch spezielle Haltestellen, um in kurzer Zeit vielen Fahrgästen den Ein-/Ausstieg zu ermöglichen.

Durch die fehlende Spurführung ist die Trasse deutlich breiter als bei den spurgeführten Varianten (2) und (3). Inwiefern sich ein BRT in der Wiesbadener Innenstadt realisieren lässt, kann mit Blick einem auf die Beispielfotos erahnt werden.

Weiterlesen

Seilbahnen

45 Jahre nach Eröffnung der ersten innerstädtischen Seilbahn Deutschlands ist dieses Transportmittel aktuell an vielen Stellen wieder in der Diskussion – sei es im RMV, in München oder Wuppertal. Seilbahnen sind direkt auf den ersten Blick charmant: Sie benötigen sie außer den Stationen und ein paar Stützen keine Infrastruktur und konkurrieren damit nicht zusätzlich um den begrenzten Straßenraum. Sie sind (vergleichsweise) einfach, schnell und günstig zu errichten und weitestgehend erschütterungs- und geräuschlos.

Auch auf den zweiten Blick behalten Seilbahnen (genauer gesagt: umlaufende zwei- oder drei-Seil-Bahnen) ihren Charme. Mit Blick auf die Transportkapazität können moderne Seilbahnen durchaus mit Bus- und Straßenbahnverbindungen mithalten: zwischen 2.000 und 7.000 Menschen sind so pro Stunde und Richtung realisierbar. Der Energieverbrauch ist gering, das Unfallrisiko in Ermangelung anderer Verkehrsteilnehmer in der Höhe niedrig und die Gondeln verkehren ohne Personal. Außerdem sind sie Stetigförderer – es werden also keine Fahrpläne benötigt, da alle paar Sekunden eine neue Gondel kommt. Da sie zwischen den Stützen keine Infrastruktur benötigt, können Seilbahnen besonders gut Hindernisse überwinden (Flüsse, Autobahnen, Gleise) oder steile Steigungen zurücklegen. Mit einer maximalen Geschwindigkeit von rund 30 km/h ist sie mit den anderen innerstädtischen Verkehrsmitteln zumindest vergleichbar. Und so existieren heute schon Seilbahnverbindungen (Koblenz, Köln, Berlin) oder ganze Netzwerke in südamerikanischen Städten.

https://blog.citybahn-verbindet.de/seilbahn-als-alternative/

Seilbahnen bringen aber auch einige, handfeste Nachteile mit sich, die auf den ersten Blick gern übersehen werden. Diese erschweren, sie im Nachhinein in gewachsene Stadtstrukturen zu integrieren.

Stationen von Seilbahnen benötigen Platz – viel Platz. Vor allem dann, wenn die Gondeln nicht auf Straßenniveau halten, sondern ‚oben‘. Sollen die Stationen leistungsfähig sein und darüber hinaus barrierefrei, sind aufwendig Bauwerke inklusive Rolltreppen, Fahrstühle und Bahnsteige notwendig. Besonders die Endhaltestellen – die den Antrieb beherbergen – sind massiv.

Auch können Seilbahnen zwischen den Stützen und Stationen keine Kurven fliegen, da die Seile (wortwörtlich) schnurgrade verlaufen. Sollen die Gondeln einem gebogenen Straßenverlauf folgen, müssen diese statt an Seilen auf Schienen laufen – damit wäre ein Vorteil der Seilbahnen dahin. Hinzu kommen große Risiken hinsichtlich Anwohnerakzeptanz, wenn die Gondeln über Privatgrundstücke oder auf Augenhöhe mit dem zweiten Obergeschoss durch die Wohnviertel fliegen.

Seilbahnlinien in La Paz. (Bild: Chumwa; Michael F. Schönitzer; Chuq, Seilbahnnetz La Paz, CC BY-SA 3.0)

Ein weiterer Nachteil: Seilbahnen sind immer Punkt-zu-Punkt-Verbindungen. Zwar lassen sich Zwischenstationen durchaus einplanen. Für Abzweige und Weichen existieren derzeit aber keine brauchbaren Konzepte. Damit sind auch Überhol- und Ausweichmöglichkeiten nicht realisierbar, ein wirkliches Netzwerk ebenfalls nicht. Und so besteht auch das knapp ein Dutzend Linien umfassende Seilbahnnetz in La Paz (Bolivien) aus einer Ansammlung von Punkt-zu-Punkt-Verbindungen zwischen einem und fünf Kilometern Länge und größeren Umsteigestationen.

Siehe auch

Hängebahnen

Zuweilen als Alternative angeführt werden Hängebahnen – mit dem wohl bekanntesten Vertreter: die Wuppertaler Schwebebahn (die technisch gesehen keine Schwebebahn ist, sondern eine Hängebahn). Die Einordnung in die obige Skala ist etwas schwierig, weil nur drei solcher Anlagen in Deutschland installiert sind: In Wuppertal sowie zwei einander sehr ähnliche Anlagen an der TU Dortmund (H-Bahn21) sowie am Düsseldorfer Flughafen (SkyTrain). Entsprechend besetzen Hängebahnen eher eine Nische – das Spektrum ihrer Einsatzfähigkeiten ist daher schwer einzugrenzen.

Schwebebahn Wuppertal

Die Wuppertaler Schwebebahn (technisch eine Einschienen-Hängebahn) durchzieht auf einer Linie mit 13,3 Kilometern die Wuppertaler Innenstadt. Davon sind knapp über 10 Kilometer über dem Flusslauf der Wupper gebaut. Insgesamt säumen 464 Stützen und Bögen den Laufweg, der zwölf Meter über der Wupper bzw. acht Meter über der Straße verläuft.

Die Schwebebahn vereint dabei Eigenschaften von Seilbahnen und Straßenbahnen: Mit einem durchschnittlichen Haltestellenabstand von 700 Metern und 24 Meter langen Zügen (42 Sitzplätze + 88 Stehplätze = 130 Plätze) erfüllt sie eine ähnliche Erschließungsfunktion wie herkömmliche Straßenbahnen. Gleichzeitig konkurriert sie aber nicht mit anderen Verkehrsteilnehmern um den knappen Straßenraum. Durch die Höherlegung der Trasse sind die Stationen deshalb (analog zu Seilbahnstationen) sehr platzbedürftig.

Darüber hinaus existieren für die Wuppertaler Schwebebahntechnologie im Fahrgastbetrieb – analog zu Seilbahnen – keine praktikablen Weichen, sodass auch hier keine Überholgleise, Abzweige, Verstärkerlinien oder gar Netzwerke gebaut werden können. Am Ende der Strecke durchfahren die Züge eine Wendeschleife. Genau genommen ist die Wuppertaler Schwebebahn also ein großer Kreisverkehr. Bleibt ein Zug liegen, steht der gesamte Betrieb, da die Züge keine Möglichkeit zum Wenden oder Ausweichen haben.

Insgesamt nutzen rund 85.000 Fahrgäste täglich die Schwebebahn – die maximale Beförderungskapazität wird mit 3.500 bis 4.000 Personen pro Stunde und Richtung angegeben. Damit liegt die Bahn gleichauf mit Straßenbahnsystemen. Der Vorteil gegenüber Straßenbahnen (weniger Platzverbrauch auf Straßenniveau) wird allerdings mit deutlich aufwendigerer (und damit teurerer) Infrastruktur sowie spürbaren, betrieblichen Nachteilen (keine Überholungen/Abzweige/Netzwerke) erkauft.

Hängebahnen

Die Hängebahnen, die auf dem Gelände der TU Dortmund sowie dem Düsseldorfer Flughafen eingesetzt werden, haben mit der Wuppertaler Variante (außer der Klassifizierung als Hängebahn) nicht viel gemein. Die fahrerlosen Fahrzeuge sind deutlich kleiner (9,20 Meter Länge, 35 bzw. 37 Plätze). Sie kommen zwar auf eine maximale Transportkapazität von knapp 2.000 Personen pro Stunde und Richtung, das allerdings auf einer deutlich kleineren Strecke. So ist die Dortmunder Strecke mit ihren fünf Stationen knapp drei Kilometer lang, die Düsseldorfer Strecke mit vier Stationen zweieinhalb Kilometer. Aufgrund des Höhenunterschiedes zum Straßenraum sind die Stationen ebenfalls platzbedürftig, die Trasse selbst verläuft ebenfalls über Straßenniveau. Allerdings können mit den hier realisierten Hängebahnen durchaus Weichen und Abzweige realisiert werden.

Die fahrerlosen Fahrzeuge ermöglichen einen hoch flexiblen Fahrzeugeinsatz – in Schwachlastphasen sogar on demand, also per Knopfdruck. Die vergleichsweise kurzen Strecken liegen deutlich unter den Möglichkeiten einer Straßenbahn. Durch die einfache Integration und die gute Kreuzungsmöglichkeit von Flüssen und Bahndämmen eignet sich die Hängebahn aber durchaus zur nachträglichen Integration in bestehende Gewerbegebiete zur Feinerschließung. Wieso also nicht über eine Linie vom neuen S-Bahnhof Schott (Mainz) über das Mombacher Hafengebiet, die Petersaue, durch den Kalle-Albert-Industriepark und über den S-Bahnhof Wiesbaden Ost in das Gewerbegebiet zwischen S-Bahn und Steinbruch nachdenken? Damit ließen sich die Industrie- und Gewerbegebiete komfortabel erschließen und sowohl die S-Bahn als auch die Straßenbahnen auf Mainzer und Wiesbadener Seite verknüpfen.

Spurbusse, Gummistraßenbahnen, ARTs

Autonomous Rail Rapid Transit (ARTs), Gummistraßenbahnen, Tramway sur pneus: Im Detail unterscheiden sich Antrieb und Ausführung der Fahrzeuge – letztlich handelt es sich aber immer um Spurbusse.

Sind Busse spurgeführt, erlaubt dies auch in engen Straßenräumen deutlich längere Fahrzeuge, da die Fahrzeuge auch in Kurven auf der definierten Route bleiben. Die Spurführung kann prinzipiell durch Führungsschienen in der Mitte (ähnlich einer Carrera-Rennbahn) oder durch Führungsrollen an der Seite geschehen. In jüngerer Vergangenheit kamen außerdem Systeme, die der Spur durch optische Sensoren (Kamera folgt weißer Linie) oder per Induktionsschleifen folgen. Da die mechanische Spurführung fehlt, müssen alle Achsen der Fahrzeuge gelenkt sein – mit entsprechend höheren Kosten und Verschleiß.

Durch die Spurführung benötigt eine Spurbustrasse weniger Platz in der Breite eine klassische Busspur. Das führt zu einem Platzvorteil, selbst wenn die Route durch normale Solo- oder Gelenkbusse befahren wird. Die Trasse in Adelaide ist mit 6,20 Metern ähnlich breit wie Straßenbahntrassen – und schmaler als Busspuren. Zusätzlich können klassische Spurbusse auch auf normalen Straßen fahren. So sind im Netz der O-Bahn Adelaide die Busse auf zwölf Kilometern separat vom übrigen Verkehr spurgeführt und nutzen davor/danach herkömmliche Straßen zur Bedienung verschiedener Ziele.

Da die Fahrstrecke der Busse fix ist, können diese auch per Oberleitung angetrieben – nur fahren Sie eben auf Asphalt und nicht auf Gleisen. Die gegenüber normalen Bussen höhere Leistungsfähigkeit kommt hier durch größere Fahrzeuge und – da die Trassen in der Regel meist exklusiv genutzt werden – höhere Durchschnittsgeschwindigkeiten.

Klassische Spurbussysteme sind selten und existieren in Deutschland quasi nicht mehr. Rund ein Dutzend „Gummistraßenbahnen“ (Tramway sur pneus) fahren in Frankreich, Italien, China und Kolumbien. Zuletzt haben sich die französischen Städte Caen und Nancy von ihren “Gummistraßenbahnen” getrennt. Zu fehleranfällig, zu teuer; sie werden durch klassische Straßenbahnen ersetzt.